Search results for "Quantum Materials"

showing 2 items of 2 documents

The classical two-dimensional Heisenberg model revisited: An $SU(2)$-symmetric tensor network study

2021

The classical Heisenberg model in two spatial dimensions constitutes one of the most paradigmatic spin models, taking an important role in statistical and condensed matter physics to understand magnetism. Still, despite its paradigmatic character and the widely accepted ban of a (continuous) spontaneous symmetry breaking, controversies remain whether the model exhibits a phase transition at finite temperature. Importantly, the model can be interpreted as a lattice discretization of the $O(3)$ non-linear sigma model in $1+1$ dimensions, one of the simplest quantum field theories encompassing crucial features of celebrated higher-dimensional ones (like quantum chromodynamics in $3+1$ dimensio…

Sigma modelSpontaneous symmetry breakingQC1-999Lattice (group)General Physics and AstronomyFOS: Physical sciencesClassical Heisenberg modelQuantum Materials53001 natural sciences010305 fluids & plasmasTheoretical physicsHigh Energy Physics - Lattice0103 physical sciencesSymmetric tensorTensorQuantum field theory010306 general physicsclassical Heisenberg modelCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Heisenberg modelPhysics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikHigh Energy Physics - Lattice (hep-lat)magnetismstatistical and condensed matter physicsQuantum Physics (quant-ph)
researchProduct

Out-of-plane transport of 1T-TaS2/graphene-based van der Waals heterostructures

2021

Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for the interpretation of the underlying electronic and magnetic phase diagram. Here, thin-layers of 1T-TaS2 are …

Materials scienceBand gapquantum materialsStackingVan der Waals heterostructuresGeneral Physics and AstronomyFOS: Physical sciencescharge-density waves02 engineering and technologyQuantum entanglementDFT calculations01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciences11. Sustainability1T-TAS2General Materials Science010306 general physicsMaterialsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsGrapheneFermi levelphase-transitionsGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Conductivitat elèctrica021001 nanoscience & nanotechnology2D materialsstatemodelelectrical propertiestransition-metal dichalcogenidessymbolsQuantum spin liquid0210 nano-technologyCharge density wave
researchProduct